From Topological to Geometric Equivalence in the Classification of Singularities at Infinity for Quadratic Vector Fields
نویسندگان
چکیده
In the topological classification of phase portraits no distinctions are made between a focus and a node and neither are they made between a strong and a weak focus or between foci of different orders. These distinctions are however important in the production of limit cycles close to the foci in perturbations of the systems. The distinction between the one direction node and the two directions node, which plays a role in understanding the behavior of solution curves around the singularities at infinity, is also missing in the topological classification. In this work we introduce the notion of geometric equivalence relation of singularities which incorporates these important purely algebraic features. The geometric equivalence relation is finer than the topological one and also finer than the qualitative equivalence relation introduced in [19]. We also list all possibilities we have for finite and infinite singularities, taking into consideration these finer distinctions, and introduce notation for each one of them. In this work we give the classification theorem and bifurcation diagram in the 12-dimensional parameter space, using the geometric equivalence relation, of the class of quadratic systems according to the configuration of singularities at infinity of the systems. Our classification theorem, stated in terms of invariant polynomials, is an algorithm for computing the geometric configurations of infinite singularities for any family of quadratic systems, in any normal form. 2010 AMS Mathematics subject classification. Primary 34A34, 34C05, 58K45.
منابع مشابه
Topological and Polynomial Invariants, Moduli Spaces, in Classification Problems of Polynomial Vector Fields
We describe the origin and evolution of ideas on topological and polynomial invariants and their interaction, in problems of classification of polynomial vector fields. The concept of moduli space is discussed in the last section and we indicate its value in understanding the dynamics of families of such systems. Our interest here is in the concepts and the way they interact in the process of t...
متن کاملGeometric Configurations of Singularities for Quadratic Differential Systems with Three Distinct Real Simple Finite Singularities
In this work we consider the problem of classifying all configurations of singularities, both finite and infinite of quadratic differential systems, with respect to the geometric equivalence relation defined in [2]. This relation is finer than the topological equivalence relation which does not distinguish between a focus and a node or between a strong and a weak focus or between foci (or saddl...
متن کاملGEOMETRIC CONFIGURATIONS OF SINGULARITIES FOR QUADRATIC DIFFERENTIAL SYSTEMS WITH TOTAL FINITE MULTIPLICITY mf = 2
In this work we consider the problem of classifying all configurations of singularities, both finite and infinite of quadratic differential systems, with respect to the geometric equivalence relation defined in [3]. This relation is deeper than the topological equivalence relation which does not distinguish between a focus and a node or between a strong and a weak focus or between foci of diffe...
متن کاملA representation for some groups, a geometric approach
In the present paper, we are going to use geometric and topological concepts, entities and properties of the integral curves of linear vector fields, and the theory of differential equations, to establish a representation for some groups on $R^{n} (ngeq 1)$. Among other things, we investigate the surjectivity and faithfulness of the representation. At the end, we give some app...
متن کاملBifurcation of limit cycles from a quadratic reversible center with the unbounded elliptic separatrix
The paper is concerned with the bifurcation of limit cycles in general quadratic perturbations of a quadratic reversible and non-Hamiltonian system, whose period annulus is bounded by an elliptic separatrix related to a singularity at infinity in the poincar'{e} disk. Attention goes to the number of limit cycles produced by the period annulus under perturbations. By using the appropriate Picard...
متن کامل